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FOREWORD

This research was conducted in support of Project SF57-001-022-03.01 (Human
Factors in Command and Control) under the sponsorship of the Naval Sea Systems
Command. Additional funding was provided by the Naval Electronics Systems Command
under Project PE 62731 N. The objective of this project is to enhance the effectiveness of
command and control systems through improved design of the human-computer interface.
In particular, the project seeks to identify the limits of the human ability to assimilate
tactical information quickly and accurately.

The experiment reported here grew out of discussions with Dr. Joel Lawson of the
Naval Electronics Systems Command. Results are intended for use by command and
control system designers.

JAMES F. KELLY, JR. JAMES 3. REGAN
Commanding Officer Technical Director
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SUMMARY

An important command and control (CI) task is the concurrent tracking of multiple
tirgets on a radar or computer-generated display. As the number of targets increases,
the operator' ability to retain critical information can be expected to diminish.
Understanding human limitations in this type of task is essential to ensure the design of
Ca systems that suit the users capabilities.

Objectives

The objectives of this research were:

1. To obtain basic performance data on the effect of critical task variables on
multltrget tracking behavior.

2. To develop and assess models that quantify human performance limits in a basic
multitarget tracking task.

Method

Six civilian psychologists served as observers in five sessions in a multi-object
tracking task. Each session consisted of 12 trials that were defined by the factorial
combination of two independent variables: the number of objects to be tracked (3, 7, or 9)
ahd the interval (3, 8, 13, or 1$ seconds) between the displayed updates of their positions.
In each trial, objects on random linear trajectories moved at one of two constant speeds.
After the initial display, positions were updated six times at one of the four inter-update
intervals. No track history was provided. The observer's task was to monitor the
trajectories and then predict the next (eighth) position of each object.

Results

I. Tracking accuracy was high (although imperfect) with five objects, but decreased
as the number of objects increased. Monitoring of nine objects clearly exceeded the
unaided observer's processing capacity.

2. Tracking performance improved as the interval between display updates in-
creased. Presumably, the longer intervals allowed more time for rehearsal of the objects'teajectorles.

3. Longer display times compensated for the greater processing load associated
with more objects. For example, performance in the l$-second/9-object condition was
comparable to that In the 5-second/7-object condition.

4 . There was eVidence that observers grouped sets of objects into chunks on the
basis of their trajectories and proximity. Such "chunking" effectively reduced the
memory load and Improved tracking performance.

5. A family of' models of human memory that focus on the encoding, learning, and
rehearsal processes of the observer were developed. The models make quantitative
predictions of pelformance based on the number of objects, the interval between updates,
and the number of updates displayed. Two of the models' predictions are consistent with
the obtained data and those reported in the psychological literature.
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Conclusions

1. The unaided human observer can keep track of about seven moving objects.
Performance improves as the Interval between updates is increased up to about 13 seconds
and, presumably, as more updates are displayed. These variables Interact in their effects
on tracking performance and may be traded off In a complex manner.

2. Multi-object tracking performance Is accounted for by two mathematical models
that express human memory limitations in terms of encoding, learning, and rehearsal
processes. Evidence supports the unconventional notion of a variable rehearsal capacity
in short-term memory.

Recommendation

The analysis of human memory and information-processing limitations should be
extended to more complex operational tasks to support system designers with quantitative
estimates of operator performance.

Vill
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INTRODUCTION

Problem

An important command 4ia'd control (C2) task is the concurrent tracking of multiple
target- on a radar or computer-generated display. As the number of targets increases,
the operator's ability to retain critical information can be expected to diminish. Under-
standing the human limitations in tthis type of task is essential to ensure that C2 systems
are designed to suit the user's capabilities.

Background

Most C2 functions in the combat direction center rely heavily on humans to process
information and make decisions. One such function requires that operators keep track of
moving targets displayed on a radar screen. For example, tracking is a critical
requirement in the Navy Tactical Data System (NTDS) for positions such as the detector-
tracker, the air intercept controller, and the tactical action officer.

These personnel interact with hardware and, software subsystems (by hooking targets,
entering data, etc.) and thereby contribute to the overall knowledge base of the system.
Reasonable answers to such questions as "What is this base of knowledge?" or "What does
the system know?" might be obtained from the computer's data base on the various tracks
of interest and their attributes (type of platform, position, course, speed, etc.).

The focus here, however, is on limits in operators' processing and on what they know,
particularly on what humans can remember about the tactical environment when limited
to their own resources. For this purpose, consider a primitive tracking problem without
any external aids or computer support to provide target symbology, identify track
numbers, etc. and operators who have been freed from disruptive auxiliary tasks, such as
communications. In this environment, the single aspect of tactical knowledge that is of
concern is the unaided ability to remember the movements of multiple targets. When left
to their own processing resources, operators must first integrate positional data over time
to acquire course and speed information. They then must devote considerable cognitive
effort to retain this information for a future report. Investigation of these processes
should reveal basic human perceptual and memory limitations that are relevant to
performance and man-machine design in more general environments.

Human Information-processing Limitations

Clearly, there will be no track information to retain, unless target movement is first
observed and detected by the operator. These operations involve one class of human
capabilities and limitations; namely, attention and perception. It is well known that, if
target positions are updated at sufficiently rapid rates (less than one per second), the
requisite integration of successive displays is readily achieved by the visual system (e.g.,
Pollack, 1972, 1974). This was dramatically demonstrated earlier by White's (1956) "time
compression" technique. He increased the update rate for a radar display from 0.1 per
second (an extremely difficult tracking task for experts) to 24 per second (a very easy
task even for novices). In these experiments, the observer reported immediately on new
information extracted from the display. There was no need to maintain contact and no
requirement to remember and report target movements later.

As the requirement to retain and report track history is imposed, however, a second
class of human capabilities and limitations becomes most relevant; namely, human



memory. The incoming information persists in the human visual system for only a brief
period about I second) before fading away. During this time, the object's trajectory must
be encoded; that is, recognized and stored in the memory system to enable further
processing. Since encoding requires about 0.3 to 0.5 second (Mackworth, 1962; Posner &
Boies, 1971), all of the perceived trajectories cannot always be encoded at once. Thus,
the encoding operation may continue for several display updates--until the limit of short-
term memory is reached.

Numerous experiments have demonstrated that the unaided human can handle about
7t2 items at the same time (e.g., Miller, 1956). The best performance by an unaided
operator should then be limited to between five and nine concurrent objects. To retain
this information, the operator must periodically rehearse it, as has been de. onstrated
with visual and verbal material (e.g., Murray & Newman, 1973). Moreover, if rehearsal is
inhibited or disrupted, performance degrades quickly (Peterson & Peterson, 1959).

Hypothesized Performance Relationships

The research on perceptual and memory limitations just cited leads to the hypothe-
sized performance surface shown in Figure 1. The surface relates tracking performance
(i.e., memory for object trajectories) to three variables: (1) the number of objects to be
tracked, (2) the number of updates that are displayed, and (3) the time between updates or
inter-update interval (IU).

Generally, the hypothesis is that performance improves as more time is available for
processing objects. Either a longer IUI or more display updates can serve this purpose.
The more potent variable seems to be display updates, because each new update provides
an additional learning opportunity and refreshes the information already in memory.

a. Few targets. b. Moderate number c. Many targets.
of targets.

4)
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Inter-update interval =IUI

Figure 1. Hypothesized performance surface for multi-object tracking.
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It is presumed that the two variables, IUI and the number of updates, interact. For
example, Figure la shows that with few updates, increases in IUI enhance performance
(e.g., the dotted line). However, with a large number of updates, the IUI effect vanishes
(e.g., the dashed line). To understand this interaction, consider the situation with few
updates. A certain amount of time is required to process an object's trajectory; that is, to
perceive, encode, and establish it in memory. If the IUI is too short, several updates will
be needed to process even a single object; with only a few updates available, overall
tracking performance will be low. However, increasing the IUI allows more time for
rehearsing the acquired trajectories and thus facilitates performance.

On the other hand, consider the situation with a large number of updates. Again, a
short IUI limits encoding and rehearsal, but here more updates compensate by providing
additional processing opportunities. Moreover, the short IUls favor the perception of
object motion. The result is a high, near-asymptotic level of tracking performance and,
as the !UI increases, virtually no further effect is expected.

This hypothesized interaction is presumed to hold for any number of objects, but the
performance asymptote decreases as the number of objects to be tracked increases
(Figures lb and Ic).

The present research seeks to verify and quantify a portion of the surface hypothe-
sized in Figure I and to understand the basic information-processing and memory
requirements for the tracking of moving objects by the unaided observer.

Objectives

The objectives of this research were:

1. To obtain basic performance data on the effect of critical task variables on
multi-object tracking.

2. To develop and assess mathematical models that quantify human performance
limits in a basic multi-object tracking task for possible application to more sophisticated
operational tasks.

METHOD

Observers

Six civilian experimental psychologists (five males and one female) served as
observers. Their ages ranged between 27 and 44 years, with a median of 31.5 years.

Apparatus

The tracking task was implemented on a Tektronix 4027 color graphics terminal
driven by a Tektronix 4051 microcomputer. The observer viewed the 20x25 cm screen of
the Tektronix 4027 from a distance of approximately 60 cm. The phosphor in the CRT
caused erased stimuli to persist for approximately 0.5 second.

Tracking Task

The display presented a series of seven snapshots of idealized target objects moving
on linear paths across the CRT. The objects were identical 6-mm pale yellow discs on a
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black background and initially randomly located on the screen. At regular intervals, all
object positions were updated simultaneously. Except for the brief persistence of the
phosphor, no track history was displayed. Thus, to track the objects, the observer first
had to derive their courses by integrating sLCcessive displays. Since no aids (e.g., grease
pencil, pencil and paper, etc.) were allowed, this information had to be maintained in
memory until tested.

Figure 2 illustrates a nine-object tracking problem to which the track history (the
dashed circles) has been added for the reader's benefit. The observer viewed only the
solid discs, which corresponded to the objects' present positions. Each object maintained
a constant but randomly selected heading and moved at a constant display speed of either
6 or 12 mm per update. On the average, half of the objects moved at each speed. All
objects were constrained to stay on the screen for at least eight updates. The paths of
the objects were permitted to cross, but their positions could not overlap. The display,
then, loosely resembled a noise-free radar screen with no external tracking aids.

t---S

Ndl- oi
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current positions, shown as the solid discs, were visible to the
observer.

Figure 2. Trajectories in a representative nine-object display.
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One sequence of seven object-position snapshots comprised a single trial. After each
trial, the screen was erased, which was the cue for the observer to respond on a hard copy
facsimile of the most recent display. Observers were instructed to place an "X" at the
position that each object would occupy if the display had been up 'ated once more. They
were encouraged to be as accurate as possible but to guess when uncertain. No feedback
was provided. After 1 minute, a warning tone signaled the imminent start of the next
trial.

Performance Measurement

A simple, three-valued scoring rule was used to measure tracking accuracy. If the
observer's predicted position X was within t 15 of the true trajectory, two points were
scored. If the absolute error in X was greater than 15, but not greater than 450, one point
was assigned. A score of zero was given if the error in X exceeded 45P. The mean score
for all objects was then taken as the observer's performance for the given trial.

Design

The observers were tested individually in six 30-minute sessions, one per day on
consecutive weekdays. The first session served as practice, and these data were not
analyzed. Each session consisted of 12 trials constructed from the factorial combination
of two factors: number of objects (5, 7, or 9) and IUI (5, 8, 13, or 18 sec). The 12 types of
trials were presented in random order in each session and for each observer. All observers
viewed identical stimulus displays but in a different order. Speed of the objects was also
varied to complete the 3 (number of objects) x 4 (IUI) x 5 (test session) x 2 (speed) design.
All statistical analyses employed the .01 level of significance.

RESULTS AND DISCUSSION

Effects of Maior Variables

A four-factor analysis of variance (ANOVA) was conducted on the mean tracking
scores derived from the observers' responses. Tracking accuracy exceeded chance
performance in all conditions. Speed was not a significant factor, F(1,5) = .28; MSe = .09;
the mean tracking score was 1.50 for slow objects and 1.51 for fast ones. Moreover,
speed did not interact with the number of objects, the IUI, or the test session. Since
speed was not a significant variable, it was eliminated as a factor, and the collapsed data
were reanalyzed. The ANOVA table is exhibited in Table I.

Mean tracking accuracy, which is presented in Figure 3, improved significantly across
the five test sessions (F(4,20) = 5.92). However, only the first and fifth test sessions
differed significantly (Tukey test). There was no interaction with the number of objects
or with the IUL. Thus, the effect of practice was uniform across task conditions.

The effects of IUI and the number of objects on tracking accuracy are presented in
Figure 4. The number of objects had a significant effect, F(2,10) = 18.42. Accuracy was
highest for five objects (mean score = 1.69 out of a possible 2.0) and then decreased for
seven objects (mean = 1.52) and for nine objects (mean = 1.30). Although this effect is not
surprising, it does reinforce the view that a memory limitation exists within this range.
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Table I

Analysis of Variance on the Effects of Test Sessions,
Number of Objects, and Inter-update Interval

Source df SS MS F

*Test sessions (T) 4 3.428 0.857 5.92*

Error 20 2.896 0.145

Number of objects () 2 8.863 4.432 18.42*

Error 10 2.406 0.241

Inter-update interval (IUI) 3 2.013 0.671 9.95*

Error 15 1.011 0.067

TxO0 8 0.376 0.047 0.44

Error 40 4.253 0.106

T x IUI 12 1.229 0.102 0.98

Error 60 6.282 0.105

Ox IUl 6 3.180 0.530 4.96*

Error 30 3.206 0.107

T Tx 0xIUI 24 2.436 0.101 1.01

Error 120 12.000 0.100

Subjects 5 0.350 0.070

Total 359 53.929

*p< .01.
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Figure 3. Tracking accuracy for the five test sessions.
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Figure 4. Tracking accuracy as a function of number of
objects and inter-update interval.
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Accuracy generally increased with the IUl. Mean tracking scores of 1.40, 1.46, 1.58,
and 1.57 were obtained for lUIs of 5, 8, 13, and 18 seconds respectively. This effect was
significant, F(3,15) = 9.95. Accuracy with IUI = 5 seconds was significantly poorer than
with IUI = 13 or 18 seconds (the Tukey test). The longer lUls may have facilitated recall
by permitting greater opportunity for rehearsal of the object trajectories.

The effect of IUI interacted with the number of objects, F(6,30) = 4.96. Thus, IUI had
virtually no effect with five objects, a moderate facilitative effect with seven objects,
and a large facilitative effect with nine objects. When 18 seconds were available for
rehearsal, the effect of the number of objects vanished. The additional time apparently
helped compensate for the increased processing load.

Learning Strategies

The observers were free to employ any strategies or mnemonic techniques to learn
the trajectories. Here, "chunking" (Miller, 1956), would be an appropriate strategy,
because, if several objects can be grouped together into a single memory unit or chunk,
fewer total items need to be remembered. If chunking were based, for example, on
clusters of objects that share proximity and directional cues, the effective memory load
would decrease and performance would improve.

Although the chunking process cannot be observed directly, a post hoc analysis
revealed evidence of its use. For these purposes, the experimenter made direct
measurements of clustering in the stimuli, the premise being that such clustering might
provide a basis for the chunking phenomenon. The measurements were independent of the
observers' responses and used the following definition of a cluster: A set of two or more
objects is a cluster if (1) the trajectories of all its members fall within a 30* arc, (2) all of
its members start within 5 cm of another object in the set, and (3) enlarging the set
violates either (1) or (2). A single object is a cluster if it satisfies condition 3. For
example, the stimulus in Figure 2 contains two clusters of two objects each (the objects
moving in parallel at the upper left and the objects moving in parallel at the center right);
and five single-object clusters. Thus, the display in Figure 2 contains seven clusters.

Only the nine-object displays were analyzed, since they would provide the greatest
variability in chunking. Figure 5 shows the relation between tracking accuracy and the
measured number of clusters in the display. Note that low cluster scores indicate a high
potential for chunking. Results of the ANOVA, presented in Table 2, indicate that the
relationship is significant, F(4,99) = 5.29. Accuracy was highest for those nine-target
patterns that could be compressed to five or six clusters; accuracy decreased as the
number of clusters increased. This suggests that observers may well have grouped nearby
objects with similar trajectories into chunks to reduce their memory load.

As discussed previously, tracking accuracy generally improved with increases in IUl.
In the present analysis, IUI tended to exhibit a similar effect (F(3,99) = 3.29, p < .05) and
there was no interaction with the presumed number of chunks (F(12,99) = .54). Thus, the
form of the relationship between IUI and performance is constant across the levels of the
derived clustering factor. This suggests that chunking was performed by the observers
early in the update, as the objects were acquired.

Debriefings gave evidence of marked individual differences in the way object
trajectories were encoded in memory. Although there were no external cues to do so,
most observers scanned the display in a clockwise pattern. They acquired the trajectories
sequentially at the rate of one or two objects per update. The predominant encoding
strategies used either a local verbal mediator or a global visual representation of the

8
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Figure 5. Tracking accuracy for nine objects as a
function of the number of clusters in the
display with inter-update interval (IUI) as a
parameter.

Table 2

Analysis of Variance on the Effects of Clustering in the
Nine-target Displays

Source df SS MS F

Inter-update interval (IUI) 3 1.962 0.654 3.29*

Number of clusters (C) 4 4.209 1.052 5.29**

IUI x C 12 1.297 0.108 0.54

Error 99 19.69 0.199

Total 118 27.158

Note. An unweighted means analysis was performed due to unequal cell frequencies.
*p < .05.

**p < .01.
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entire display. Several studies have shown that associating verbal labels with visual
material improves memory performance (e.g., Daniel, 1972). In the present experiment,
some observers attached a "time of day" to each object based on its trajectory. An object
moving horizontally from left to right was encoded as a "three" (for three o'clock), etc.
The resulting numbers were then rehearsed sequentially according to the larger clockwise
pattern. This verbal strategy could be disrupted by interference between clockface
numerals and by changes in the serial order as objects would cross paths.

On the other hand, the visual strategy relied heavily on the spatial relations between
objects. For example, Gestalt properties (e.g., symmetry) enhance memory for visual
material (Howe, 1980). In the present task, some observers reported grouping nearby
objects having similar, opposing, or crossing trajectories into chunks. In this way, the
spatial relations shared by targets within a chunk would help the observer retain the
individual trajectories. Other visual referents, such as the edges of the screen, were used
as mnemonics when possible. Outlying objects that could not be easily grouped were
attended to separately. Although these detailed strategies did not correlate with
performance, their existence suggests further research and possible operator aids.

MODELS OF MULTI-OBJECT TRACKING

Information-processing Framework

The approach to the multi-object tracking problem was borrowed freely from
Sperling's (1960, 1963) research on visual processes in memory, from the human informa-
tion-processing concepts of Norman (1968) and Atkinson and Shiffrin (1968), and from the
"levels of processing" formulation of Craik and Lockhart (1972). First, it is convenient to
distinguish among three functional types of memory without regard to their possible
structural properties:

1. Sensory memory refers to information carried "in a format faithful to its
modality of arrival" (Crowder, 1976, p. 45). Such memory is "precategorical"; that is, it
precedes the attachment of any linguistic category to the stimulus information. The
sensory memory for the visual modality is called iconic memory, while the corresponding
memory for audition is called echoic memory (Neisser, 1967).

2. Primary memory refers to "a mental process whereby a small amount of
information can be held in a highly accessible state for transformation, rehearsal,
recombination, or other operations" (Crowder, 1976, p. 156). Information so held is very
susceptible to disruption so that rehearsal is a key factor in its maintenance. Although
this information may take various forms or "encodings" (visual, phonological, etc.), the
preeminence of echoic memory in the rehearsal process implies a major role for
phonological encodings in the primary memory.

3. Secondary memory refers to information held in a more permanent, enriched
form that can include semantic content and associations resulting from more elaborate
processing. Access to such information is not immediate as in the case of primary
memory; rather, its access requires active and deliberate retrieval processes.

*The functional components just described are illustrated schematically in Figure 6.
Although represented as separate "structures," they need not be interpreted as physically
distinct memory stores. Rather, they may be viewed as distinct memory representations
that result from different levels of processing. Craik and Lockhart (1972) have argued
convincingly for a process-oriented concept of memory in which successively deeper
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levels of encoding (e.g., sensory vs. phonological vs. semantic) produce increasingly moreelaborate and persistent memories.

I-I

EXECUTIVE PRIMARY EOY

:..i z

z ICONHCIC

Z

,,,

OSECONDARY MEMORY

Figure 6. Schematic model of information-processing framework.

The level of processing to be employed is largely determined by conscious strategies,
although the demands of the task are highly influential in this selection. These strategies
(referred to as "control processes" by Atkinson & Shiffrin, 1968) include the processes that
direct attention among sensory modalities, the processes that transform sensoryinformation into selected encodings, the process of rehearsal that maintains information
in primary memory, and a variety of elaborate imagery or other recoding operations that
build up long-term representations in secondary memory. In Figure 6, the term
"executive" is used to represent the general management function of supervising the
various control processes, and its span of control is indicated by the dashed box.

In the specific context of the tracking task, it was assumed that, at the beginning of
each update, the observer first attends to the displayed information about one or more ofthe object trajectories. The displayed motion of the object(s) is held in iconic memory,
which has a large capacity but a very rapid decay, on the order of about I second
(Sperling, 1960). To yield any more than this momentary storage, the information must betransformed so that it is compatible with the encoding characteristics of primary memory
(which is largely phonological). To effect this encoding, the executive invokes a scanningand a search recognition process in which a familiar representation is sought for the
object's apparent trajectory. Such a representation is presumed to exist independently in
secondary memory, having been developed from the observer's prior experience. For
instance, an object moving horizontally from left to right might be encoded as "three



So'clock," with its trajectory represented as a pointing clock hand. Other representations
or encodings are, of course, possible.

The initial encoding of an object gives rise to learning (i.e., the observer's knowledge
of the object's true trajectory is increased). Additional, more refined learning may occur
on subsequent updates.

The foregoing processes of attending, encoding, and learning are extremely rapid.
The bulk of each update is presumably devoted to rehearsal; that is, maintaining the
learned trajectories in primary memory. Only about 7±2-object trajectories can be
retained (Miller, 1956) and, unless maintained by a rehearsal process, the information is
lost within about 20 seconds (Peterson & Peterson, 1959). Rehearsal is presumably
effected by subvocalizations and is mediated by echoic memory. The set of object
trajectories is presumed to be stored in a sequence, then rehearsed in that sequence, and
later retrieved in that same sequence (Sperling, 1963). The locus of the rehearsal process
is referred to as the rehearsal buffer (Atkinson & Shriffin, 1968). If the demand for
processing exceeds the capacity of the buffer, the executive must decide whether to
forestall further processing of new items or to replace old items in the buffer with newly
encoded ones. In either case, performance will suffer if the rehearsal capacity is
exceeded.

Since the tracking task tests for immediate recall, information can be output directly
from primary memory at the time of response. Also, the nature of the task would seem to
confine the observer to relatively shallow levels of processing (i.e., visual or phonological
encodings), providing little opportunity for more permanent storage in secondary memory.
Therefore, issues that relate long-term retention, retrieval, and forgetting are not critical
here, and the present models make no provisions for such processing.

Mathematical Models

Development

A family of four mathematical models of the observer's processing was developed and
evaluated. Each model includes:

I. An encoding process in which the observer transforms "raw" visual information
into a form more suitable for storage and further processing.

2. A learning process that provides for stepwise improvement in the accuracy of an
object's perceived trajectory at each update.

3. A limited rehearsal process that maintains the information learned about target
i trajectories in primary memory.

4 . A response process that sequentially outputs information about the objects at
* test time.

'A model with a long-term memory component was developed. Here, secondary

memory served as an auxiliary store for information that was 'bumped out" of a fixed-
capacity rehearsal buffer. While its predictions were satisfactory over the range of the
conditions studied, the model made unreasonable predictions as the number of objects and
updates were increased.

12



The four models make identical assumptions for the learning and response processes.
Two alternative assumptions are introduced for the number of new objects encoded at

* each update. Also, two different assumptions are considered for an object's required
rehearsal time. These variations combined to yield the family of four models that were
evaluated.

Encoding. As the observer attends to the display, information first enters iconic
memory. Further processing requires encoding, which is the transformation of this "raw"
data into a form compatible with primary memory and entails invoking a familiar
representation for the visual datum. The details of this process are not stipulated here,
but some encoding scheme is deemed essential to yield efficient processing for multiple
objects.

In general, the objects to be tracked need not all be encoded at once because (1) this
might be a large processing burden at a single update, and (2) the limited rehearsal
capacity might not be adequate to maintain them in storage. This leads to the
introduction of two alternative assumptions for the encoding of new (i.e., previously
unencoded) objects. The first assumption, El, says that the observer keeps the rehearsal
buffer filled to its capacity. This notion presumes that the executive knows the available
buffer capacity at every update and directs the encoding process to provide sufficient new
objects (if any remain) to keep the buffer working at its maximum. The second encoding
assumption, E2, which is less restrictive, denies such complete control by the executive
and recognizes that variability and lapses in the observer's processing may yield fewer
objects for rehearsal than the buffer might hold.

Definitions: Let there be Z objects in the tracking task. At the kth update,
define E k as the number of objects previously encoded and Ak as

the number of additional objects that can be accommodated in the
rehearsal buffer. Let Nk = min ( Ak , Z - Ek).

Assumption El: At update k, the number of new objects encoded is precisely Nk.

Assumption E2: At update k, the number of new objects encoded is a random
variable X with the following distribution:

P(X = x) TP(x) =(e "AX Xx) / x! 0 - e ) for x = 1, 2,..., (Nk - 1) (1)

P(X = Nk) = Z TP(x), (2)
x = Nk

where TP(x) is the Poisson distribution truncated at zero (cf. Haight, 1967).

Under assumption El, then, the extent of new encoding is precisely tuned to equal
Nk, which is the smaller of (1) the additional room in the buffer (Ak) and (2) the number of

objects as yet uncoded (Z - Ek).

Under E2, encoding is probabilistic. TP is the truncated Poisson distribution that
excludes zero from its range and has X as its parameter (X > 0). With this distribution, it is
theoretically possible to sample more objects than the Nk that can be accommodated in

the buffer; in such cases, the number encoded is limited to this maximum of Nk objects
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(equation 2 above). Note that, under E2, no new objects will be encoded, if and only if

Nk= 0 (which follows from equation 2). Likewise, it follows from equation 2 that, if

Nk = 1, then precisely one new object is encoded. In all other cases (i.e., for Nk> 2), the

number of newly encoded objects will be an integer between I and Nk•

It should be seen that El and E2 make identical assumptions for Nk = 0 or 1. If

Nk > 1, the assumptions diverge. El always ensures that a full sample of Nk new objects

will be encoded, while E2 allows for random processing effects to yield less than this
maximum.

Learning. While knowledge about an object's trajectory can vary continuously from
no information to virtually perfect information, it is convenient to reduce this continuum
to discrete states. Consistent with the three-valued scoring procedure used in the
experiment, the proposed models assume three learning states:

State U: Unencoded (nothing is known about the object's trajectory).

State 1: Partial learning (19 < I tracking error I < 45).

State 2: Refined learning (I tracking error I < 150).

All objects start and remain in state U unless encoded. Any changes in state occur
only in the initial moments of each update as the new positions of the objects are
detected. At such times, the observer may encode an object for the first time or refine
the information for a previously-encoded object.

When newly encoded, it is assumed that an object's state changes from U to either
state 2 (with probability c ) or to state I (with probability I - ci). An object in state I
may, on any update, be upgraded to state 2 with probability $. This improvement in
knowledge is taken to be stochastic for two reasons: (1) The observer may not attend to
the object when its position is updated, and (2) any improvement in the encoded trajectory
may be insufficient to yield a higher level of accuracy according to the scoring criteria.
Formally, the changes in learning states are defined by the following transition matrix:

New Learning State

2 1 U

2 1 0 0
Prior
Learning 1 1 1-8 0
State

U I I-a 0

The matrix allows stepwise improvement, but no regression in learning. Figure 7
illustrates the results of this learning process as a sequence of K updates unfolds for nine
objects to be tracked.
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(Before) Sequence of K updates b(After)

r u =target in state U, unlearned or unsampled state

I target in state 1, 15 < I tracking error_ 4 5

2 target in state 2, 1 tracking errorj <15P

. Figure 7. Illustration of learning states for nine objects
before, during, and after a sequence of K
updates.

If an object is encoded early in a sequence of updates (as compared with a later
encoding), there will be additional opportunities to increase the level of learning. There is
a greater probability that such an object will be "absorbed" in state 2. Similarly,
increasing the total number of updates enhances learning and improves tracking
performance.

Rehearsal.

1. Memory maintenance. Rehearsal serves as a memory maintenance function that
refreshes the encoded representations that would otherwise be lost from primary memory.
Restrictions on the rehearsal process ensure that only a limited number of objects can be
retained. The following assumptions were made:

a. All encoded objects are rehearsed sequentially in the order of their encoding
and then cyclically during the IUL

b. In each cycle, each encoded object is rehearsed for its required rehearsal
time, t.

c. There is a maximum time allowed (j seconds) between an object's succes-
sive rehearsals.

' - .. .... .. .. . .. . ... .. .... .. ... .. .. .. ... .. . . .. ... . . . . .. .. ...1 1



Thus, objects are rehearsed in sequence and form cyclea in which each object is
rehearsed for its required t seconds. The rationale for the time requirement is that any
rehearsal time that is less than some critical duration is ineffective in refreshing memory
for the object's trajectory. A further restriction derives from the limited span of primary
memory. Memory is presumed to decay unless an object is rehearsed at least once every
1i seconds.

2. Required rehearsal time: fixed vs. variable. In addition to the 11 restriction, the
working capacity of the rehearsal buffer clearly depends on t, the time required for the
rehearsal of one object. Two competing assumptions must be considered. The first holds
that t is fixed for every update, while the second allows the required time to decrease as
a function of previous rehearsals. These assumptions imply two different concepts for the
capacity of the rehearsal buffer; namely, a fixed-size buffer vs. a variable-size buffer
respectively.

Assumption RI: The required rehearsal time t for an object is fixed; that is, t 0
always.

Assumption R2: The required rehearsal time t for an object depends on the amount
of its rehearsal during prior updates. In particular, t is a constant (0) until at least T
seconds of prior rehearsal time have been accumulated, after which t decreases
exponentially to e. Formally, for an object with cumulative rehearsal time T on previous
updates,

, if T < T
+ (0- E ) exp (-v (T - T)), if T > T

whereT,V > 0 0 > E > 0.

Assumption RI clearly implies the familiar notion of a fixed-size buffer (Atkinson &
Schiffrin, 1968); that is, the maximum number of objects that can be rehearsed on each

Supdate is constant. With assumption R2, however, a previously rehearsed object may
require less time than one that is new and unrehearsed. Thus, as objects are rehearsed

over several updates, they require less and less rehearsal time as illustrated in Figure 8.
The effect is to make additional room available in the rehearsal buffer and effectively
increase its capacity. Assumption R2, therefore, departs from other interpretations of
buffer capacity (cf. Norman, 1968, Atkinson & Shiffrin, 1968).

, ,,J

LU

U'

2' £------------ ------------

T

CUMULATIVE REHEARSAL TIME (T

Figure 8. Required rehearsal time function proposed in
assumption R2.
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The assumed rehearsal process is illustrated in Figure 9, in which three encoded
objects have required rehearsal times of t I , t 2 ,9 and t3 .* There is sufficient time in the

IUI for three full rehearsal cycles, which consumes X( t I + t 2 + t 3 ) seconds. Since the

remaining time (say, r seconds) at the end of the IUl does not permit an additional cycle,
it was arbitrarily assumed that the excess time is allocated equally to the three objects.
The actual rehearsal time that object i would receive in this update is, therefore,
3t.i + r/3 . (Note that Figure 9 depicts variable rehearsal times that follow from

assumption R2; assumption RI would have fixed t. = 0 for all objects on all updates.)

1st cycle 2nd cycle 3rd cycle

1 2 3 1 2 3 1 2 3

t t t t t t t t t r
1 2 3 1 2 3 1 2 3

* Jul 'I

Figure 9. Example of rehearsal process during an up-
date.

Response. After the last update, the observer's task is to indicate the next position
for each object. It is assumed that the output of the rehearsal buffer is sequential and
that the projected position for each object conforms to its last encoded trajectory. A
chance response is made to all unencoded objects. When the three-valued scoring system
is applied, each encoded object receives a score (1 or 2) that corresponds to its current
learning state.

Summary of the Models. The four alternative models of performance in the multi-
object tracking task are represented in Figure 10. The top of the figure shows that the
models share identical assumptions for the probabilistic learning process (parameters a
and 8), the constraint on rehearsal maintenance (parameter 1j), and the response process.

The first disinction among the models concerns the encoding of new objects. Models
I and II (assumption El) hold that enough new objects are encoded at each update to keep
the rehearsal buffer filled. In constrast, Models III and IV (assumption E2) invoke a
modified Poisson sampling process (with parameter X) to govern the encoding of new

* objects.

The second distinction is the required rehearsal time for objects in the rehearsal
buffer. Assumption RI in Models I and III holds that the required rehearsal time is
constant (parameter 0). Models of this type, when combined with the memory mainte-
nance assumption, imply a conventional fixed-size rehearsal buffer. On the other hand,
assumption R2 in Models II and IV postulates that required rehearsal time for an object
varies as a function of its prior rehearsal (parameters 0, T, c, and v). The effect is to
create a variable-sized buffer as the required rehearsal times decrease over the sequence
of updates.
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REHEARSAL TIME REHEARSAL TIME

Figure 10. Alternative assumptions for Models E-IV.

Consider the effect of the different assumptions on the number of obi~zrs being
tracked and rehearsed in the buffer as a sequence of six updates unfolds. For illustration,
let the interval between updates be 8.0 seconds, let jiJ = 5.5 (i.e., an object's trajectory
must be rehearsed at least every 5.5 seconds), and let B 1.25 seconds, so that Models 1
and IHI demand 1.25 seconds per rehearsal for each object. Then, let T = 2.5 seconds,
£ = 0.4 seconds, and V = 0.5 govern the decreases in required rehearsal time that areassumed in Models II and IV.

For these parameter values, Table 3 presents the maximum number of objects that
could be tracked and the actual number of objects tracked on each update for Models -IV.

(X --2 and representative sampling in Models I11 and IV were assumed). It follows that, forthe parameters selected, Model I predicts higher tracking performance than does Model
m11.2 Although both have fixed buffers that can admit five objects, Model I immediately
fills the buffer by encoding five objects at the first update. Model Ii, however, must obey
the Poisson sampling assumption and here does not encode the fifth trajectory until the
third update. Therefore, performance in Model I has the benefit of additional learning
trials in which to refine the accuracy of the encoded trajectories.

2 TX= e two models will be equivalent if l > .
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Table 3

Number of Objects Tracked for the
Four Models on each Update

Model I Model II Model III Model IV
Number of Update No. Update No. Update No. Update No.
Objects
Tracked 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Maximum 5 5 5 5 5 5 55 6 7 7 8 5 5 5 5 5 5 5 5 6 7 7

Actuala 5 5 5 5 5 5 5 5 6 7 7 8 2 3 5 5 5 5 2 3 5 6 7 8

Note. Parameter values used: j = 5.5, 0 = 1.25, e = .4, v = .5, X = .2. Interval between
updates = 8.0 seconds.

aModels III and IV are not deterministic. Representative random sampling was assumed.

A similar argument leads to the conclusion that Model [I predicts higher tracking
performance than does Model IV.3 Each has a variable-size buffer that can admit five
objects on the first update and one object on updates 3, 4, and 6. But in Model I the
buffer is always kept filled, while Model IV is constrained by its Poisson process.

Finally, with the parameters selected for this illustration, note that (1) Model II
predicts better tracking than does Model I, and (2) Model IV predicts better tracking than
does Model IIl. More objects are encoded in Models II and IV than in their counterparts.

The matter at issue is which of the four models more closely fits the performance
data of the observers. Do the data support a choice between the two assumptions for
encoding new objects and/or between the two assumptions for the required rehearsal
time? Do the models yield plausible estimates for the several parameters?

Assessment

Three criteria were used to evaluate the models:

I. They must produce sensible predictions across broad ranges in the task variables
(number of objects, number of updates, and length of IUI); that is, the predictions should
agree qualitatively with the hypothetical performance surface in Figure 1.

2. There must be reasonable quantitative agreement between predictions and the
data observed in the present experiment.

3. The best-fitting parameter values must be psychologically plausible.

'lbid.
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A Tektronix 4054 microcomputer was programmed in BASIC to yield, for each model,
predictions of the mean tracking scores in the 12 experimental conditions. (Mathematical
details are provided in the appendix.) Parameter estimation was based on a criterion that
minimized the average absolute error in predicting the 12 means. A general "hill-
climbing" FORTRAN algorithm (Wickens, 1967) was adapted to BASIC and used to search
the parameter space.

All four models make reasonable qualtitative predictions as the variables are allowed
to take on extreme values. Thus, as the number of objects or updates or the IUI grows
very large, predicted performance is nevertheless bounded within reasonable limits.
Similarly, appropriate predictions are obtained with small values of the variables.
Deciding among the models therefore requires more precise tests involving the fits to
observed data.

The parameter estimates and the associated prediction errors for these quantitative
tests of the four models are presented in Table 4. Models II and IV clearly provide better
agreement with the observed data. The quality of the fits is also displayed in Figure 11,
which plots the observed data and the predictions for Models I-IV.

Table 4

Parameter Estimates and Prediction Errors
for the Four Models

Encoding Learning Rehearsal

Model X a 0 1 V Error

I - .58 .078 1.0 5.5 .. .. 089

II - .072 .233 1.4 4.5 2.80 .40 .50 .058

III 1.25 .083 .25 0.8 5.5 - - - .04

IV 1.83 .20 .20 1.3 4.44 2.28 .40 .65 .054
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Thus, the evidence strongly favors the rehearsal assumption R2 in Models II and IV;
viz., the time required to rehearse a given trajectory decreases as the prior rehearsal
time increases. Models I and III are rejected. These assume fixed rehearsal times and
imply rehearsal buffers with fixed capacity. However, they do not properly predict the
improvement in performance observed as IUI increases.

There is no clear choice between the alternative encoding assumptions (El vs. E2) in
Models II and IV. Model IV requires the additional Poisson parameter (X) to govern the
encoding of new objects, but its predictions were only trivially better than the determin-
istic "fill-the-buffer" assumption of Model II. The fits for these two preferred models are
generally satisfactory, as shown in Figures 1 lb and I ld, and the values of the estimated
parameters (Table 4) are reasonable."

Human information processing in the tracking task may be interpreted as follows:

I. If there is room in the rehearsal buffer, the observer encodes about two objects
. on each update. In general, this is sufficient to fill or nearly fill the rehearsal buffer.

2. An object's first encoding is most likely (probability = I - a- .8-.9) to produce
marginal tracking accuracy (i.e., absolute error = 15-45°).

3. There is a moderate chance (probability -= .2) on each subsequent update of

improving its accuracy.

4. An object's first rehearsal requires = 1.4 seconds (parameter 0).

5. The rehearsal maintenance constraint demands that each trajectory be rehearsed
at least every i seconds, with U - 4.5.

6. After two rehearsals of an object, sufficient rehearsal time is accumulated
(T = 2.3 - 2.8 seconds) to produce an exponential decrease in its required rehearsal times
on succeeding updates. Rehearsal time then decreases to an asymptote = c = 0.4 seconds
with rate = v = .5 -. 6).

The foregoing analysis implies that, with a sufficiently large number of updates, an
unaided observer could maintain as many as 9 to 12 trajectories with an interval between
updates of at least 5 seconds. If hardware/software aids were provided, the operator's
capacity could, of course, be increased. Likewise, any demands of auxiliary tasks would
result in lower performance limits due to disruption of processing.

"Also considered were two additional models that follow from a third encoding
assumption; namely, that a constant (integer) number of objects is sampled on each
update, subject to space in the buffer. Applying either assumption RI or R2 yielded two
alternative models, with prediction errors of .085 and .055 respectively. The best fit in
each case was for a fixed sample size of two objects. However, the invarance of the
sampling process in these models has less appeal. In any event, the general conclusions
remain the same.
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CONCLUSIONS

1. The unaided observer can keep track of, and later report the movements of,
about seven objects. This constraint results from perceptual and memory limitations.

2. Tracking performance improves as the time between display updates is in-
creased, up to about 13 seconds. This processing time is apparently required to establish
and maintain suitable representations in memory. Performance can be improved by
adding more updates; however, the several variables interact and may be traded off in a
complex manner to affect tracking performance.

3. Short-term memory capacity can be enhanced by clustering strategies in which
neighboring objects with similar trajectories are grouped together in memory.

4. Multi-object tracking performance is accounted for by two mathematical models
that express human memory limitations in terms of encoding, learning, and rehearsal
processes. Evidence supports the unconventional notion of a variable rehearsal capacity
in short-term memory.

5. It is useful to analyze C2 tasks that impose critical perceptual and memory
requirements in terms of human information-processing characteristics.

RECOMMENDATION

Analysis of human memory and information-processing limitations should be applied
to complex operational tasks to support system designers with quantitative estimates of
operator performance.

23



REFERENCES

Atkinson, R. C., & Shiffrin, R. M. Human memory: A proposed system and its control
processes. In K. W. Spence & J. T. Spence (eds.), The psychology of learning and
motivation (Vol. 2). New York: Academic Press, 1968, pp. 89-105.

Craik, F. I. M., & Lockhart, R. S. Levels of processing: A framework for memory
research. Journal of Verbal Learning and Verbal Behavior, 1972, 1 1 671-684.

Crowder, R. G. Principles of learning and memory. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1976.

Daniel, T. C. Nature of the effect of verbal labels on recognition memory for form.
Journal of Experimental Psychology, 1972, 9, 152-157.

Haight, F. A. Handbook of the Poisson distribution. New York: John Wiley and Sons,
Inc., 1967.

Howe, E. S. Effects of partial symmetry, exposure time, and backward masking on judged
goodness and reproduction of visual patterns. Quarterly Journal of Experimental
Psychology. 1980, 32, 27-55.

Mackworth, J. F. The visual image and the memory trace. Canadian Journal of
Psychology, 1962, 16., 55-59.

Miller, G. A. The magical number seven plus or minus two: Some limits on our capacity
for processing information. Psychological Review, 1956, 63., 81-97.

Murray, D. 3., & Newman, F. M. Verbal and visual coding in short-term memory. Journal
of Experimental Psychology, 1973, 100 58-62.

Neisser, U. Cognitive psychology. New York: Appleton-Century-Crofts, 1967.

Norman, D. A. Toward a theory of memory and attention. Psychological Review, 1968,
75, 522-536.

Peterson, L. R., & Peterson, M. 3. Short-term retention of individual verbal items.
Journal of Experimental Psychology 1959, 5, 193-198.

Pollack, I. Detection of changes in spatial position: Short-term visual memory or motion
perception? Perception and Psychophysics, 1972, 11, 17-27.

Pollack, 1. Detection of changes in spatial position: IV. Multiple display fields, display
aiding, and interference. Human Factors, 1974, 16. 93-116.

Posner, M. I., & Boies, S. 3. Components of attention. Psychological Review, 1971, 78,
391-408.

Sperling, G. The information available in brief visual presentations. Psychological
Monographs 1960, 74 (Whole No. 11).

Sperling, G. A model for visual memory tasks. Human Factors., 1963,_, 19-31.

2P



White, C. T. Time compression of radar and sonar displays (Naval Electronics Laboratory
Rep. 671). San Diego: Naval Electronics Laboratory, 18 February 1956.

Wickens, T. D. Parameters estimation in Markov chain learning models. Unpublished
master's thesis, Brown University, 1967.

.i

26



APPENDIX

DERIVATIONS OF THE PREDICTIONS FOR THE FOUR MODELS

A-0



DERIVATIONS OF THE PREDICTIONS FOR THE FOUR MODELS

The assumptions for encoding, memory maintenance, and rehearsal time determine
strictly or govern probabilistically the updates at which objects get encoded; that is, they
control the encoding schedules. These schedules will be described later, after a
consideration of the tracking scores that the observer obtains at test time for a given
schedule.

Tracking Score for an Encoded Obiect

Consider an arbitrary encoded object at test time. For each of the four models, the
learning assumptions embodied in the transition matrix ensure that the object will be in
either state 1 or 2. Its actual state depends only on (1) the update at which it was
encoded and (2) the transition probabilities a and B. Suppose the object was encoded on
update k (1 < k < 6). Then, at test time after the sixth update, the probability, Pk(j), that
the object is in sate j, j = 1, 2 is given by

Pk~l) = (1U-) 0 -0)

P k(2) 1 -=Pk (1).

This follows because, in order to terminate in state 1, the object must fail to enter state 2
on update k (probability = I - a) and then must remain in state I (probability = 1 - B) on
each of the (6 - k) updates that follow.

Next, recall that encoded objects receive a tracking score equal to their terminal
encoding state, so that the expected score, say ik ' for an object encoded on update k is

YU ;< = 2 Pk (2) + Pk (1)

2 2-P k(1)

= 2-10-z) (1l-1) 6 - k (Al)

Tracking Score for an Unencoded Obiect

If an object remains unencoded through the six updates, it terminates in state U and
it is assumed that the observer makes a chance response at test time. Given the three-
valued scoring rule tied to the error in its reported trajectory, its expected score, say Xu 9

is given by

xu = 2[Prob( errorl <15) + Prob(lP < lerrorl 5 )

= 2 (30/360) + (60/360)

1/3. (A-2)

Tracking Score for a Given Encodinc Schedule

Let the total number of objects to be tracked be Z and consider an encoding schedule,

E, in which ek objects are newly encoded on the kth update. In general, E = (el,
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6e,.. e,.,e) where ek  0, 1, 2, ... and ! e < Z. Again, for all four
k=l

models, the expected tracking score, say :Z, for the schedule E is the mean expected score
for the Z objects that constitute the task; that is,

6 6
Z(E)= Ek + (Z- Z e (A3)

k k k=l k I

Here, each of the ek objects encoded on the kth update has expected score X (given by
equation AO), and each of the (Z - Z e k) unencoded objects has an expected score = Xu

= 1/3 (from equation A2). Note that equation A3 yields the (expected) tracking score, if
the schedule E is known. (Of course, Z is under the control of the experimenter.) The
schedules for Models I-IV must still be constructed.

Finding the Encoding Schedule

In general, there are three restrictions on ek, the number of objects that are newly
encoded on the kth update:

1. The number of unencoded objects. The number of objects newly encoded at a
given update obviously cannot exceed the number of unencoded objects that remain. If Ek
is defined as the number of objects encoded prior to update k, then there are (Z - Ek)
unencoded objects at the start of update k. It follows that

eI < Z-E l = Z

and
k-I

ek < Z-Ek = Z- E e. fork>1.k j=I i

2. The duration of the IUI. Consider the Ek objects that had been encoded on prior
updates; they must be rehearsed again on update k. Suppose that their required rehearsal

Ek
times are tI,k t2,k, ., seconds, with sum k = t Then UI

k9 i=1
seconds remain to accommodate new objects, each of which requires 0 seconds for its
initial rehearsal. Therefore, ek :_ INT (IUI - Sk / 0], where INT(a) is the largest integer
< a.

3. The rehearsal maintenance constraint. This constraint demands that no object
go unrehearsed for more than u seconds. First, suppose that there are previously encoded
objects (i.e., Ek > 0), and consider the oldest, first-encoded one. Under either
assumption RI or R2, its required rehearsal time, tik, cannot exceed that of any other

object. Therefore, any number of new encodings that satisfies the u-constraint for the
oldest object necessarily does so for all objects to be rehearsed. It then follows that ek
cannot exceed the largest integer having this property.
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Formally,

e k <_INT I [lp - (Sk - tl,k )]"el}, if El<> 0. (A4)

If Ek = 0, there were no previous encodings and, in this case, the rehearsal constraint
always permits an ek> 1. In particular,

ek = I + INT(p /0) = INT[(p + e)1l Iif Ek = 0. (A5)

Since Ek = 0 implies Sk = 0, equations A4 and A5 can be combined as follows:

e k :iINT{[ -(S k - t * )] /0 } ,

where ,if Ek = 0

t 1tl,k' if Ek > 0.

Since each ek must satisfy jointly the three restrictions (1-3 above), there is a

fundamental upper bound for ek:

ek :Smin(Z-Ek, INT[(IUI-Sk)/9], INT{[i - (Sk -t)] /0}). (A6)

Letk=1. Then Ek = Sk = 0andt* = e, sothat

e I < min (Z, INT (IUI/), INT [()j + e)/el). (A7)

Thus, equation A7 yields an upper bound for e, , and upper bounds for e2 , e3 , etc.

are given recursively by equation A6. The recursive burden is carried by the terms Ek
(the number of objects encoded prior to the start of update k), Sk (the sum of their
required rehearsal times, t. ), and t* = t . Formulas for the encoding schedulesilk tk tlk
produced by the four models are obtained by applying their specific sampling and
rehearsal assumptions to equation A6.

Model I

Model I always encodes enough objects to fill the available room in the rehearsal
buffer. This means that strict equality holds in equations A6 and A7. In particular, for
Model I, equation A7 becomes:

e, = min(Z, INT (IUI/O), INT[(I + 8)/1). (A8)

Also, recall that Model I has fixed required rehearsal time (0) for each encoded object on
all updates. It follows that no new encodings are possible on updates k > I. The buffer is
already filled at update 1, and the required rehearsal times remain constant at e
thereafter. Thus, no additional room can be created in the buffer. Therefore, for Model
I"

E = (e*, 0, 0, 0, 0, 0)

where e* = min(Z, INT(IUI/e), INT[( + e)/0 1).
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,Model II

Model 11 also always encodes enough objects to fill the rehearsal buffer. However,
unlike Model I, additional space may become available on later updates due to the reduced
rehearsal times for previously-encoded objects. Since the buffer is always filled, strict
equality again applies in equation A6. Thus, for Model II, e I is given by equation AS, and
for k > I

E k ( Ek
e k = min ZEk I INTr(IUI -Z tik)/O],INlh Z Et ik- t10 6(A9)

i Zli=" i=1t

whereEk = E ei .i=l
By assumption R2, each encoded object i has a required rehearsal time ti,k on update k

that depends on its prior cumulative rehearsal time and the four parameters e, -, C, and v.
The encoding schedule, E, is obtained by (1) fixing values for the parameters P', 0, T C, and
v; (2) applying equation AS to yield e1 ; and (3) recursively applying equation A9 to yield
e 2 , e 3 ... , e 6

Model III

For Model III, the constant rehearsal times imply a fixed-size buffer, but limitations
in the encoding process cannot guarantee to fill the buffer at each update. An upper
bound for e I is given by equation A7. The inequality is preserved because Model I1, unlike

Models I and 11, depends on statistical sampling to encode new objects. According to the
fixed rehearsal time assumption, all ti,k = 0. Thus, t* = 0 for all k and Sk = 0

Thus, equation A6 becomes

ek < min Z - E k , INT[(IUI -0 Ek)/eI, INT {[Ij - (Ek - 1) /01 , (AIO)

k-I
where again Ek e .i=l

When ip and 0 are given, Model III gives rise to a set of possible encoding schedules
rather than a single E. First, pJ and 0 determine an upper bound for e1 via equation A7.
The Poisson sampling scheme then determines the probability of the possible values of e l ,

with a maximum value given by the right-hand side of equation A7. Each of these values,
in turn, determines an upper bound for e 2 via equation AIO; the truncated Poisson

distribution is again applied to obtain the probability of the possible values for e2. This

recursion is continued for all six updates. The result is a set of possible encoding
schedules fEl} together with the probability of each schedule being realized, say, P(i).

For any one schedule, Ei = (e l , e 2, ... , e, ., e.), and

6
P(E) 11 Prob(X = ek),

k=l

which is the probability given by assumption E2, with x = ek and Nk equal to the right-

hand side of equation A6. Finally, the expected tracking score for Model III is given by:
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Expected tracking score : .X (E) P (), (All)

where (El) is that of equation A3.

Model IV

Model IV postulates Poisson sampling and variable rehearsal time. Here, the reduced
rehearsal times generate a variable-sized buffer, and the encoding of new objects is
governed by the probability distribution in Assumption E2. As in Model III, equation A7
yields an upper bound for e 1. For k > 1, we use equation A9 recursively except that

strict equality does not hold in Model IV. Rather, the right-hand side gives an upper bound
for each ek.

The parameters ji, 0, r, E, and v determine the overall limits for values of ek. The

actual ek values again depend on statistical sampling. Also, as in Model I1, the set of

possible encoding schedules must be elaborated, together with the probability of each
schedule's occurrence. The expected tracking score for Model IV is obtained as in
equation AlIl.

Parameter Estimation

The criterion for "goodness-of-fit" was minimization of the absolute error in
predicting the observed data. A standard procedure would be to submit each model to the
parameter estimation program with all its parameters free to vary. This was done for
Model I. For Models II-IV, however, the mapping from the set of rehearsal parameters
{ iJ , ,, , v } to the encoding schedule E (or to the set of schedules { E.}) is many-to-

one. Accordingly, E or {E i} was first fixed by choosing values for the appropriate

rehearsal parameters. Then the model was submitted to the estimation program with free
parameters a and 0 (and X if applicable). This technique-selecting rehearsal parameters
to yield distinct schedules and then optimizing the remaining parameters--was iterated to
yield the overall best parameter set.
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